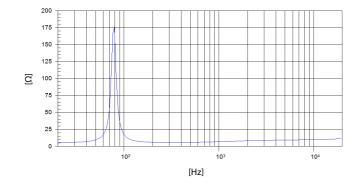


# 5P200/Nd

Low & Mid Frequency Transducer Preliminary Data Sheet

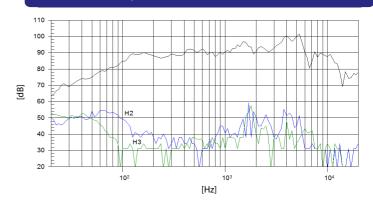

#### **TECHNICAL SPECIFICATIONS**

| Nominal diameter    | 127 mm 5 in          |
|---------------------|----------------------|
| Rated impedance     | 8 Ω                  |
| Minimum impedance   | 6,7 Ω                |
| Power capacity*     | 150 W <sub>AES</sub> |
| Program power       | 300 W                |
| Sensitivity         | 92 dB @ 1W @ 1m      |
| Frequency range     | 70 - 10.000 Hz       |
| Voice coil diameter | 38 mm 1,5 in         |
| Air gap height      | 6 mm                 |
| Voice coil length   | 14 mm                |
| BI factor           | 9,9 N/A              |
| Moving mass         | 0,011 kg             |
| Winding material    | Aluminium alloy      |
| Spider material     | Polycotton           |
| Magnet material     | Neodimium            |
| Cone material       | Paper                |
| Frame material      | Cast aluminium       |



| Overall diameter       | 155 mm   | 6,1 in  |
|------------------------|----------|---------|
| Bolt circle diameter   | 141,5 mm | 5,57 in |
| Baffle cutout diameter | 119 mm   | 4,69 in |
| Depth                  | 71 mm    | 2,8 in  |
| Net weight             | 1,24 kg  | 2,73 lb |

## FREE AIR IMPEDANCE CURVE






### THIELE-SMALL PARAMETERS\*\*

| Resonant frequency, f <sub>s</sub>                         | 78 Hz                 |
|------------------------------------------------------------|-----------------------|
| D.C. Voice coil resistance, R <sub>e</sub>                 | 5,3 Ω                 |
| Mechanical Quality Factor, Q <sub>ms</sub>                 | 10,7                  |
| Electrical Quality Factor, Q <sub>es</sub>                 | 0,31                  |
| Total Quality Factor, Qts                                  | 0,30                  |
| Equivalent Air Volume to C <sub>ms</sub> , V <sub>as</sub> | 4,5 I                 |
| Mechanical Compliance, C <sub>ms</sub>                     | $355~\mu m$ / $N$     |
| Mechanical Resistance, R <sub>ms</sub>                     | 0,5 kg / s            |
| Efficiency, η <sub>0</sub>                                 | 0,68 %                |
| Effective Surface Area, S <sub>d</sub>                     | 0,0095 m <sup>2</sup> |
| Maximum Displacement, X <sub>max</sub> ***                 | 5,7 mm                |
| Displacement Volume, V <sub>d</sub>                        | 54,15 cm <sup>3</sup> |
| Voice Coil Inductance, L <sub>e</sub>                      | 0,25 mH               |

#### FREQUENCY RESPONSE



Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m.

#### Notae.

This datasheet is done with the measurements of a laboratory prototype. Small differences may appear once the driver is transferred to the production line and manufactured in big quantities. Please refer to the serial datasheet for the definitive information of the average production.

<sup>\*</sup> The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

<sup>\*\*</sup> T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

<sup>\*\*\*</sup> The  $X_{max}$  is calculated as  $(L_{vc} - H_{ag})/2 + (H_{ag}/3.5)$ , where  $L_{vc}$  is the voice coil length and  $H_{ag}$  is the air gap height.